If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2+96x+1=0
a = 36; b = 96; c = +1;
Δ = b2-4ac
Δ = 962-4·36·1
Δ = 9072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9072}=\sqrt{1296*7}=\sqrt{1296}*\sqrt{7}=36\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-36\sqrt{7}}{2*36}=\frac{-96-36\sqrt{7}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+36\sqrt{7}}{2*36}=\frac{-96+36\sqrt{7}}{72} $
| 22.2=18.5m | | 27=5r-8 | | 1500=30x-12x | | 15+3v=8v+4+6v | | 2(12+x)=14 | | 6x+6-10=5x-2 | | 7-2a+a=1+2a | | 180=5x-60 | | -18+5x=-12x-2 | | 21=x/7+5 | | -16=m+11 | | 2/x+2+1/5=6/x+5 | | 10x-5=2(5x+7) | | -10+4b=7b+5 | | (2x-5)/(8x^2-2x-3)=0 | | 1/2x+2=3/4x+21/2 | | -1.5=-5k | | 162=17-y | | 3/8=r+23/38=r+23 | | 12x+2=34x+212 | | .50x+.45(50)=48.5 | | c=10-9c | | 7+3n=7+3n | | 6a-2=8(a-2) | | X-2/2+3=4x/5 | | -4+5b=8b+8 | | 1x/14=10x/10 | | 8-4x=-8x+8 | | 6(c-3)=4(c+3) | | 180=5(x-60)+55 | | 9=7-|x+2| | | 8v-9=-v |